Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Chin Med Assoc ; 86(2): 135-137, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2236816

ABSTRACT

The Omicron variant BA.2 is the dominant form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in many countries, including those that have already implemented the strictest quarantine mandates that effectively contained the spread of the previous variants. Although many individuals were partially or fully vaccinated, confirmed Omicron infections have far surpassed all other variants combined in just a couple of months since the Omicron variant emerged. The ChAdOx1-S (AstraZeneca), BNT162b2 (Pfizer-BioNTech), and mRNA-1273 (Moderna) vaccines offer protection against the severe illness of SARS-CoV-2 infection; however, these currently available vaccines are less effective in terms of preventing Omicron infections. As a result, a booster dose of BNT162b2 or mRNA-1273 is recommended for individuals >12 years old who had received their second dose of the approved vaccines for >5 months. Herein, we review the studies that assessed the clinical benefits of the booster dose of vaccines against Omicron infections. We also analyzed public data to address whether early booster vaccination effectively prevented the surge of the Omicron infections. Finally, we discuss the consideration of a fourth dose of vaccine as a way to prevent possible upcoming infections.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , Child , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2
2.
J Chin Med Assoc ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2237216

ABSTRACT

COVID-19 has greatly affected human life for over 3 years. In this review, we focus on smart healthcare solutions that address major requirements for coping with the COVID-19 pandemic, including (1) the continuous monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), (2) patient stratification with distinct short-term outcomes (e.g. mild or severe diseases) and long-term outcomes (e.g. long COVID), and (3) adherence to medication and treatments for patients with COVID-19. Smart healthcare often utilizes medical artificial intelligence (AI) and cloud computing and integrates cutting-edge biological and optoelectronic techniques. These are valuable technologies for addressing the unmet needs in the management of COVID. By leveraging deep/machine learning (DL/ML) capabilities and big data, medical AI can perform precise prognosis predictions and provide reliable suggestions for physicians' decision-making. Through the assistance of the Internet of Medical Things (IoMT), which encompasses wearable devices, smartphone apps, Internet-based drug delivery systems, and telemedicine technologies, the status of mild cases can be continuously monitored and medications provided at home without the need for hospital care. In cases that develop into severe cases, emergency feedback can be provided through the hospital for rapid treatment. Smart healthcare can possibly prevent the development of severe COVID-19 cases and therefore lower the burden on intensive care units.

3.
J Chin Med Assoc ; 85(9): 891-895, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1931931

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants of concern can infect people of all ages and can cause severe diseases in children, such as encephalitis, which require intensive care. Therefore, vaccines are urgently required to prevent severe disease in all age groups. We reviewed the safety and efficacy profiles of mRNA vaccines-BNT162b2 and mRNA-1273-demonstrated by clinical trials or observed in the real world. mRNA-1273 is effective in preventing SARS-CoV-2 infection in preschool children (6 months-6 years old). Both BNT162b2 and mRNA-1273 are effective in preventing SARS-CoV-2 infection in school-aged children and adolescents, thereby preventing post-coronavirus disease (COVID) conditions. The common side effects of vaccination are pain at the injection site, fatigue, and headache. Myocarditis and pericarditis are uncommon. Monitoring post-vaccination troponin levels may help prevent severe cardiac events. The SARS-CoV-2 coronavirus mutates its genome to overcome the herd immunity provided by mass vaccinations; therefore, we may need to develop new generations of vaccines, such as those using viral nucleocapsid proteins as antigens. In conclusion, the mRNA vaccines are generally safe and effective in preventing severe diseases and hospitalization among children and adolescents.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , Hospitalization , Humans , Nucleocapsid Proteins , SARS-CoV-2 , Troponin , Vaccination , Viral Vaccines
4.
J Chin Med Assoc ; 83(8): 701-703, 2020 08.
Article in English | MEDLINE | ID: covidwho-733328

ABSTRACT

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been causing respiratory diseases globally, damaging wide ranges of social-economic activities. This virus is transmitted through personal contact and possibly also through ambient air. Effective biosensor platforms for the detection of this virus and the related host response are in urgent demand. These platforms can facilitate routine diagnostic assays in certified clinical laboratories. They can also be integrated into point-of-care products. Furthermore, environmental biosensors can be designed to detect SARS-CoV-2 in the ambient air or in the intensive care ventilators. Here, we evaluate technical components of biosensors, including the biological targets of recognition, the recognition methods, and the signal amplification and transduction systems. Effective SARS-CoV-2 detectors can be designed by an adequate combination of these technologies.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , COVID-19 , Fluorescence Resonance Energy Transfer , Humans , Pandemics , SARS-CoV-2
5.
J Chin Med Assoc ; 83(6): 524-526, 2020 06.
Article in English | MEDLINE | ID: covidwho-542049

ABSTRACT

The rapid spread of coronavirus disease 2019 (COVID-19) in many countries causes citizens of daily inconvenience and even life-threat for elderly population. The invasion of the main pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 2019 novel coronavirus [2019-nCoV]), into human body causes different levels of impact to various patients. One of the most important issues for COVID-19 is how to defend this virus with the ability to foresee the infected targets. Thus, we maintain the quarantined essentially as for as others saved from COVID-19. So far, the routine laboratory test to confirm whether infected by SARS-CoV-2/2019-nCoV or not is through real-time reverse transcription polymerase chain reaction (rRT-PCR; quantitative polymerase chain reaction [qPCR]) with certain sequence regions that recognize SARS-CoV-2/2019-nCoV RNA genome. The heavy loading of rRT-PCR (qPCR) machine and handling labor have tight-packed the instruments as well as the manpower almost in every country. Therefore, the alternative approaches are eagerly waiting to be developed. In this review article, we sort out some state-of-the-art novel approaches that might be applied for a fast, sensitive, and precise detection of SARS-CoV-2/2019-nCoV not only to help the routine laboratory testing but also to improve effective quarantine.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , COVID-19 , Clinical Laboratory Techniques , Humans , Pandemics , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL